182 research outputs found

    Optimal Control to Limit the Propagation Effect of a Virus Outbreak on a Network

    Get PDF
    The aim of this paper is to propose an optimal control strategy to face the propagation effects of a virus outbreak on a network; a recently proposed model is integrated and analysed. Depending on the specific model caracteristics, the epidemic spread could be more or less dangerous leading to a virus free or to a virus equilibrium. Two possible controls are introduced: a test on the computers connected in a network and the antivirus. In a condition of limited resources the best allocation strategy should allow to reduce the spread of the virus as soon as possible

    State Feedback Optimal Control with Singular Solution for a Class of Nonlinear Dynamics

    Get PDF
    The paper studies the problem of determining the optimal control when singular arcs are present in the solution. In the general classical approach the expressions obtained depend on the state and the costate variables at the same time, so requiring a forward-backward integration for the computation of the control. In this paper, sufficient conditions on the dynamics structure are provided and discussed in order to have both the control and the switching function depending on the state only, so simplifying the computation avoiding the necessity of the backward integration. The approach has been validated on a classical SIR epidemic model

    Classification of ductile cast iron specimens: A machine learning approach

    Get PDF
    In this paper an automatic procedure based on a machine learning approach is proposed to classify ductile cast iron specimens according to the American Society for Testing and Materials guidelines. The mechanical properties of a specimen are strongly influenced by the peculiar morphology of their graphite elements and useful characteristics, the features, are extracted from the specimens’ images; these characteristics examine the shape, the distribution and the size of the graphite particle in the specimen, the nodularity and the nodule count. The principal components analysis are used to provide a more efficient representation of these data. Support vector machines are trained to obtain a classification of the data by yielding sequential binary classification steps. Numerical analysis is performed on a significant number of images providing robust results, also in presence of dust, scratches and measurement noise

    An Improvement in a Local Observer Design for Optimal State Feedback Control: The Case Study of HIV/AIDS Diffusion

    Get PDF
    The paper addresses the problem of an observer design for a nonlinear system for which a preliminary linear state feedback is designed but the full state is not measurable. Since a linear control assures the fulfilment of local approximated conditions, usually a linear observer is designed in these cases to estimate the state with estimation error locally convergent to zero. The case in which the control contains an external reference, like in regulations problems, is studied, showing that the solution obtained working with the linear approximation to get local solutions produces non consistent results in terms of local regions of convergence for the system and for the observer. A solution to this problem is provided, proposing a different choice for the observer design which allows to obtain all conditions locally satisfied on the same local region in the neighbourhood of a new equilibrium point. The case study of an epidemic spread control is used to show the effectiveness of the procedure. The linear control with regulation term is present in this case because the problem is reconducted to a Linear Quadratic Regulation problem. Simulation results show the differences between the two approaches and the effectiveness of the proposed on

    Analysis, Simulation and Control of a New Measles Epidemic Model

    Get PDF
    In this paper the problem of modeling and controlling the measles epidemic spread is faced. A new model is proposed and analysed; besides the categories usually considered in measles modeling, the susceptible, the exposed, the infected, the removed and, less frequently, the quarantine individuals, two new categories are herein introduced: the immunosuppressed subjects, that can not be vaccinated, and the patients with an additional complication, not risky by itself but dangerous if caught togeter with the measles. These two novelties are taken into account in designing and scheduling suitably control actions such as vaccination, whenever possible, prevention, quarantine and treatment, when limited resources are available. An analysis of the model is developed and the optimal control strategies are compared with other not optimized actions. By using the Pontryagin principle, it is shown the prevailing role of the vaccination in guaranteeing the protection to immunosuppressed individuals, as well as the importance of a prompt response of the society when an epidemic spread occurs, such as the quarantine intervention

    A real time classification algorithm for EEG-based BCI driven by self-induced emotions

    Get PDF
    Background and objective: The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method: The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results: Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions: The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities

    A stochastic delay differential model of cerebral autoregulation

    Get PDF
    Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift

    A linear quadratic regulator for nonlinear SIRC epidemic model

    Get PDF
    The control of an epidemic disease consists in introducing the strategies able to reduce the number of infected subjects by means of medication/quarantine actions, and the number of the subjects that could catch the disease through an informative campaign and, when available, a vaccination strategy. Some diseases, like the influenza, do not guarantee immunity; therefore, the subjects could get ill again by different strain of the same viral subtype. The epidemic model adopted in this paper introduces the cross-immune individuals; it is known in literature as SIRC model, since the classes of susceptible (S), infected (I), removed (R) and cross-immune (C) subjects are considered. Its control is herein determined in the framework of the linear quadratic regulator, by applying to the original nonlinear model the optimal control found on the linearized system. The results appear satisfactory, and the drawback of using a control law based on the linear approximation of the system is compensated by the advantages arising from such a solution: no costate equations to be solved and a solution depending on the current state evolution which allows a feedback implementation

    Graphite nodules features identifications and damaging micromechanims in ductile irons

    Get PDF
    Ductile irons mechanical properties are strongly influenced by the metal matrix microstructure and on the graphite elements morphology. Depending on the chemical composition, the manufacturing process and the heat treatments, these graphite elements can be characterized by different shape, size and distribution. These geometrical features are usually evaluated by the experts visual inspection, and some commercial softwares are also available to assist this activity. In this work, an automatic procedure based on an image segmentation technique is applied: this procedure is validated not only considering spheroidal graphite elements, but also considering other morphologies (e.g. lamellae)

    Early estimation of the number of hidden HIV infected subjects: An extended Kalman filter approach

    Get PDF
    In the last decades several epidemic emergencies have been affecting the world, influ encing the social relationships, the economics and the habits. In particular, starting in the early 0 80, the Acquired Immunodeficiency Syndrome, AIDS, is representing one of the most worrying sanitary emergency, that has caused up to now more than 25 million of dead patients. The infection is caused by the Human Immunodeficiency Virus, HIV, that may be transmitted by body fluids; therefore with wise behaviours the epidemic spread could rapidly be contained. This sanitary emergency is peculiar for the long incubation time: it can reach even 10 years, a long period in which the individual can unconsciously infect other subjects. The identification of the number of infected unaware people, mandatory to define suitable containment measures, is here obtained by using the extended Kalman filter applied to a noisy model in which, reasonably, only the number of infected diagnosed patients is available. Numerical simulations and real data analysis support the effective ness of the approac
    • …
    corecore